I // Fig. 7.9: fig07_09.cpp

2 // Bar chart printing program.

3 #include <iostream>

4 #include <iomanip>

5 #include <array>

6 using namespace std;

7

8 1int main(Q)

9 {

10 const size_t arraySize = ;

11 array< unsigned int, arraySize > n =
12 { ’ ’ ' ’ ’ ’ ’ ’ ’ ’ }1
13

14 cout << << endl;
15

Fig. 7.9 | Bar chart printing program. (Part | of 3.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

16 // for each element of array n, output a bar of the chart

17 for (size_t i = 0; 1 < n.size(); ++i)

18 {

19 // output bar labels ("0-9:", ..., "90-99:", "100:")
20 if (= i)

21 cout << ;

22 else if (= i)

23 cout << ;

24 else

25 cout << i * << << (i *) + 0 << ;
26

27 // print bar of asterisks

28 for (unsigned 1int stars = U; stars < n[i]; ++stars)
29 cout << ;

30

31 cout << endl; // start a new line of output

32 } // end outer for

33 } // end main

Fig. 7.9 | Bar chart printing program. (Part 2 of 3.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

CGrade distribution:
0-9:
10-19:
20-29:
30-39:
40-49:
50-59:
60-69: *
70-79: #*%
80-89: #wkk
90-99: ==«
100: *

Fig. 7.9 | Bar chart printing program. (Part 3 of 3.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

Using the Elements of an array as
Counters

Sometimes, programs use counter variables to summarize data,
such as the results of a survey.

In Fig. 6.9, we used separate counters in our die-rolling
program to track the number of occurrences of each side of a
die as the program rolled the die 6,000,000 times.

An array version of this program is shown in Fig. 7.10.

This version also uses the new C++11 random-number
generation capabilities that were introduced in Section 6.9.

The single statement in line 22 of this program replaces the
sw1 tch statement in lines 23-45 of Fig. 6.9.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

1 // Fig. 7.10: fig07_10.cpp

2 // Die-rolling program using an array instead of switch.

3 #include <iostream>

4 #include <iomanip>

5 #include <array>

6 #include <random>

7 #include <ctime>

8 using namespace std;

9

10 1int main()

11 {

12 // use the default random-number generation engine to

13 // produce uniformly distributed pseudorandom int values from 1 to 6
14 default_random_engine engine(static cast< unsigned int >(time())));
15 uniform_int_distribution< unsigned int > randomInt(I,);

16

17 const size_t arraySize = 7; // ignore element zero

18 array< unsigned int, arraySize > frequency = {}; // initialize to Os
19
20 // roll die 6,000,000 times; use die value as frequency index
21 for (unsigned int roll = 1; roll <= : ++roll)
22 ++frequency[randomInt(engine)];
23

Fig. 7.10 | Die-rolling program using an array instead of switch. (Part | of
2.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

24 cout << << setw() << << endl;
25

26 // output each array element's value

27 for (size_t face = |; face < frequency.size(); ++face)

28 cout << setw() << face << setw() << frequency[face]
29 << endl;

30 } // end main

Face Frequency
1 1000167
2 1000149
3 1000152
4 998748
5 999626
6 1001158

Fig. 7.10 | Die-rolling program using an array instead of switch. (Part 2 of
2)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

Our next example (Fig. 7.11) uses arrays to summarize the
results of data collected in a survey.

Consider the following problem statement:

— Twenty students were asked to rate on a scale of 1 to 5 the quality
of the food in the student cafeteria, with 1 being “awful” and 5
being “excellent.” Place the 20 responses in an integer array and
determine the frequency of each rating.

C++ provides no automatic array bounds checking to
prevent you from referring to an element that does not exist.

Thus, an executing program can “walk off” either end of an
array without warning.

In Section 7.10, we demonstrate the class template vector’s
at function, which performs bounds checking for you.

Class template array also has an at function.

OoOo~NOTUnNHh WN=

10
11
12
13
14
15
16
17
18
19
20

// Fig. 7.11: fig07_11.cpp
// Poll analysis program.
#include <iostream>
#include <iomanip>
#include <array>

using namespace std;

int main()

{

// define array sizes
const size_t responseSize = i // size of array responses
const size_t frequencySize = ¢, // size of array frequency

// place survey responses in array responses
const array< unsigned int, responseSize > responses =

{ ’ ’ H ’ H ’ ’ H ’ ’ ¥] ’ ?] ¥ ’ ’ ? };

// initialize frequency counters to 0O
array< unsigned int, frequencySize > frequency = {};

Fig. 7.11 | Poll analysis program. (Part | of 2.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

21 // for each answer, select responses element and use that value
22 // as frequency subscript to determine element to increment
23 for (size_t answer = (; answer < responses.size(); ++answer)
24 ++frequency[responses[answer]];
25
26 cout << << setw() << << endl;
27
28 // output each array element's value
29 for (size_t rating = |; rating < frequency.size(); ++rating)
30 cout << setw() << rating << setw() << frequency[rating]
31 << endl;
32 } // end main
Rating Frequency

1 3

2 5

3 7

4 2

5 3

Fig. 7.11 | Poll analysis program. (Part 2 of 2.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

It’s important to ensure that every subscript you use to access
an array element is within the array’s bounds—that is,
greater than or equal to 0 and less than the number of array
elements.

Allowing programs to read from or write to array elements
outside the bounds of arrays are common security flaws.

Reading from out-of-bounds array elements can cause a
program to crash or even appear to execute correctly while
using bad data.

Writing to an out-of-bounds element (known as a buffer
overflow) can corrupt a program’s data in memory, crash a
program and allow attackers to exploit the system and execute
their own code.

Common Programming Error 7.4

Referring to an element outside the array bounds is an
execution-time logic error. It isn’t a syntax error.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

T

Error-Prevention Tip 7.1

When looping through an array, the index should never
g0 below 0 and should always be less than the total
number of array elements (one less than the size of the
array). Make sure that the loop-termination condition
prevents accessing elements outside this range. In
Chapters 15—16, you’ll learn about iterators, which can
help prevent accessing elements outside an array’s (or
other container’s) bounds.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

Static Local arrays and Automatic
Local arrays

« Aprogram initializes static local arrays
when their declarations are first encountered.

 |Ifa staticarray is not initialized explicitly
by you, each element of that array is initialized
to zero by the compiler when the array Is

created.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

Performance Tip 7.1

We can apply static to a local array declaration so
that it’s not created and initialized each time the program
calls the function and is not destroyed each time the
function terminates. This can improve performance,
especially when using large arrays.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

I // Fig. 7.12: fig07_12.cpp

2 // static array initialization and automatic array initialization.
3 #include <iostream>

4 #include <array>

5 using namespace std;

6

7 void staticArrayInit(); // function prototype

8 void automaticArrayInit(); // function prototype
9 const size_t = 7

10

Il int main(Q)

12 {

13 cout << ;

14 staticArrayInit();

15 automaticArrayInit(Q);

16

17 cout << ;
18 staticArrayInit();

19 automaticArrayInit();
20 cout << endl;
21 } // end main
22

Fig. 7.12 | static array initialization and automatic array initialization.
(Part |1 of 4.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

